
2019-09-20

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Do-while loops

2
Do-while loops

Outline

• In this lesson, we will:

– Describe do-while loops

• A variation of while loops

– Look at two applications:

• Required input from users or sensors

• Fixed-point iteration

– We will look at an engineering principle of static determination

3
Do-while loops

Looping statements

• A while loop has the following flow chart

– It requires that the condition is initially true

4
Do-while loops

Looping statements

• In some circumstances, it may not be possible to determine if any
condition is true prior to any execution

2019-09-20

2

5
Do-while loops

Do-while loops

• A do-while loop is essentially a while loop that does not check the
condition before the first time the block of statements is executed

do {

The looped block of statements

- to be executed as long as the

condition is 'true'

} while (Boolean-valued condition);

// Continue executing here as soon as the

// condition evaluates to 'false'
Note the semicolon

6
Do-while loops

Example: user input

• For example, suppose you absolutely require input from the user

– This could be checked before, but leads to repeated code
void high_low_game() {

int target{(std::rand() % 100) + 1};

int guess{};

std::cout << "Pick a number between 1 and 100: ";

std::cin >> guess;

while (guess != target) {

if (guess < target) {

std::cout << "Low" << std::endl;

} else {

assert(guess > target);

std::cout << "High" << std::endl;

}

std::cout << "Pick a number between 1 and 100: ";

std::cin >> guess;

}

std::cout << "Good guess" << std::endl;

}

7
Do-while loops

Example: user input

• The repetition of the code can be avoided
void high_low_game() {

int target{(std::rand() % 100) + 1};

int guess{};

do {

std::cout << "Pick a number between 1 and 100: ";

std::cin >> guess;

if (guess < target) {

std::cout << "Low" << std::endl;

} else if (guess > target) {

std::cout << "High" << std::endl;

}

} while (guess != target);

std::cout << "Good guess" << std::endl;

}

8
Do-while loops

Example: user input

• Try this yourself:
#include <iostream>

#include <cstdlib>

// Function declarations

void high_low_game();

int main();

// Function definitions

int main() {

high_low_game();

return 0;

}

void high_low_game() {

int target{(std::rand() % 100) + 1};

int guess{};

do {

std::cout << "Pick a number between 1 and 100: ";

std::cin >> guess;

if (guess < target) {

std::cout << "Low" << std::endl;

} else if (guess > target) {

std::cout << "High" << std::endl;

}

} while (guess != target);

std::cout << "Good guess" << std::endl;

}

2019-09-20

3

9
Do-while loops

Fixed-point iteration

• As a second example: significant scientific computation starts with
an approximation and iterates to find a better solution

– If successive iterations are sufficiently close, we assume that it is a good
approximation

– This requires at least one iteration to see if we are sufficiently close

– For example, to find a point x such that x = cos(x), under some
circumstances, all you must do is pick a starting point and repeatedly
apply cos to an initial value

10
Do-while loops

Fixed-point iteration

• You can do this with your calculator:

– You keep iterating until two consecutive solutions are close enough

Using radians:
1.0
0.5403023058681397
0.8575532158463934
0.6542897904977792
0.7934803587425656
0.7013687736227565
0.7639596829006542
0.7221024250267078

Using degrees:
1.0
0.9998476951563912
0.9998477415452118
0.9998477415310838
0.9998477415310881
0.9998477415310881

Ultimately, it converges to:
0.7390851332151606

11
Do-while loops

Fixed-point iteration

• A simplified flow chart is as follows:

12
Do-while loops

Fixed-point iteration

• Normally, however, the condition is affected by the action of the
looped block of statements

#include <cmath>

double cosine_fixed_point();

double cosine_fixed_point() {

double x_current{1.0};

double x_previous;

do {

x_previous = x_current;

x_current = std::cos(x_current);

} while (std::abs(x_previous - x_current) > 1e-10);

return x_current;

}

2019-09-20

4

13
Do-while loops

Fixed-point iteration

• Suppose you try finding the fixed point of cot(x)

– There are infinitely many fixed points:

– The code requires hardly any modification…

do {

x_previous = x_current;

x_current = 1.0/std::tan(x_current);

} while (std::abs(x_previous - x_current) > 1e-10);

0.8603335890193798

3.425618459481728

6.437298179171947

9.529334405361964

14
Do-while loops

Fixed-point iteration

• Problem: it runs forever

– In this case, it is in a non-terminating loop

– How can we deal with this?

• In engineering, it is essential to ensure that no loop runs forever,
even accidentally, as from the JPL coding standard:

Rule 3 (loop bounds)

All loops shall have a statically determinable upper-bound on the
maximum number of loop iterations.

• Here, static means that a reader can look at the code and determine
the upper bound before the source code is compiled

15
Do-while loops

Fixed-point iteration

• Here we stop if we exceed 1000 iterations:

16
Do-while loops

Fixed-point iteration

• Here is our implementation:
double fixed_point();

void fixed_point() {

double x_current{1.0};

double x_previous{};

unsigned int num_iterations{0};

do {

++num_iterations;

x_previous = x_current;

x_current = std::cos(x_current);

} while ((std::abs(x_previous - x_current) > 1e-10)

&& (num_iterations < 1000));

if (std::abs(x_previous - x_current) <= 1e-10) {

std::cout << "Fixed point: " << x_current << std::endl;

} else {

std::cout << "Did not converge..." << std::endl;

}

}

2019-09-20

5

17
Do-while loops

Fixed-point iteration

• Try this yourself:
#include <cmath>

#include <iostream>

// Function declarations

void fixed_point();

int main();

// Function definitions

int main() {

fixed_point();

return 0;

}

void fixed_point() {

double x_current{1.0};

double x_previous{};

unsigned int num_iterations{0};

do {

++num_iterations;

x_previous = x_current;

x_current = std::cos(x_current);

} while ((std::abs(x_previous - x_current) > 1e-10)

&& (num_iterations < 1000));

if (std::abs(x_previous - x_current) <= 1e-10) {

std::cout << "Fixed point: " << x_current << std::endl;

} else {

std::cout << "Did not converge..." << std::endl;

}

}

18
Do-while loops

Summary

• Following this lesson, you now

– Understand how to implement do-while loops in C++

– Have seen how to repeatedly respond to data from the user or sensors

– Have had exposure to numerical algorithms

– Understand why it is necessary to limit the number of times the
statement block is executed

19
Do-while loops

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Do_while_loop

20
Do-while loops

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

https://en.wikipedia.org/wiki/Do_while_loop

2019-09-20

6

21
Do-while loops

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

